The Bor Format consists of two parts:

  • the specification of the storage format

  • the specification of the field type

Introduction

First, it is assumed that a file matches a recording as an independant logical unit. The file is named with a .bor extension.

File name example

50001180101060101P.bor
Table 1. File name structure
5 0001 180101060101 D .bor

Generation

Serial

Date

Domain

Format

Table 2. Domain ID
ID Domain

D

Drilling parameters

G

Grouting parameters

J

JetGrouting parameters

P

Ménard Pressuremeter Test

A

Continuous Flight Auger Pile (CFA)

L

Lugeon Test

V

Vibroflotation

Y

Dynamic probing and SPT

Abilities

The file has the following abilities:

  • recording description

  • data logs

  • non-modification source-file guarantee

Format specification

The bor file is a zip format archive containing the files below:

  • A file description that contains technical informations non-specific to the recording type and field properties, references to data file: description.xml

  • Data file, example: data.nc

Data file

Data file use the netCDF (3.6+) format. It contain data logs and each variable.

Description file

The description file contains 2 different types of information:

  • non-specific technical information

  • field-specific properties

Example of Description file

Example of description.xml file (drilling parameters)
<?xml version="1.0" encoding="UTF-8"?>
<description xmlns="http://www.lim.eu/description" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.lim.eu/description description.xsd">
  <filename>50001180101070101D</filename>
  <creation>2018-01-01T07:01:01+01:00</creation>
  <modification>2018-01-01T07:31:01+01:00</modification>
  <project_ref>Bor-Format</project_ref>
  <borehole_ref>SP1</borehole_ref>
  <cell>
    <mcc>208</mcc>
    <mnc>01</mnc>
    <cellid>31605177</cellid>
    <lac>21301</lac>
  </cell>
  <operator>ROBERT</operator>
  <device>
    <serial>50001</serial>
    <version>1.4</version>
    <build>20180101</build>
  </device>
  <drilling>
    <machine_ref>DRIL</machine_ref>
    <method>DRLMTD_RTR</method>
    <tool>DRLBIT_CNTCI</tool>
    <tool_diameter unit="mm">66</tool_diameter>
    <rod_length unit="m">2</rod_length>
  </drilling>
  <convention version="1.1">
    <parameters phase="DRILL">
      <inclination>
        <X unit="degree">91.9</X>
        <Y unit="degree">88.6</Y>
      </inclination>
      <effective_duration unit="s">1800.00</effective_duration>
      <logfile>data.nc</logfile>
    </parameters>
  </convention>
</description>

Non-specific technical information

Table 3. Non-specific technical information
Property Description Type Required Example

borehole_ref

Borehole reference

text

required [1]

SP1

borehole

Borehole information

structure (see below)

optional

cell

Cell position

structure (see below)

optional

creation

Creation date

iso8601

required

2018-01-01T07:01:01+01:00

device

Device information

structure (see below)

required

drilling

Drilling information

structure (see below)

required

filename

File name

text

required

50001180101070101D

modification

Modification date

iso8601

required

2018-01-01T07:31:01+01:00

operator

Operator name

text

optional

ROBERT

position

GPS measurement

structure (see below)

optional

project_ref

File reference

text

required

Bor-Format

Borehole information (optional)

Table 4. Borehole information
Property Description Type Required Example

borehole_diameter

Borehole diameter

length

optional

66 (mm)

water_depth

Depth of water level [2]

level

optional

8.97 (m)

Cell position (optional)

Table 5. Cell position
Property Description Type Required Example

cellid

Cell ID

integer

required

31605177

lac

Local area code

integer

required

21301

mcc

Mobile country code

integer

required

208

mnc

Mobile network code

integer

required

1

GPS measurement (optional)

Table 6. GPS measurement (WGS84)
Property Description Type Required Example

altitude

Altitude

length

required

186 (m)

eph

Standard deviation of horizontal position error

length

required

12.229 (m)

epv

Standard deviation of vertical position error

length

required

13.9042 (m)

latitude

Latitude

angle

required

45.75905881 (degree)

longitude

Longitude

angle

required

4.91944618 (degree)

Device information

Table 7. Device information
Property Description Type Required Example

build

Build version

text

optional

20180101

serial

Serial number

integer

required

50001

version

Hardware version

text

optional

1.4

Drilling information

Table 8. Drilling information
Property Description Type Required Example

bit_mass

Drilling tool mass

mass

optional

10 (kg)

fluid

Drilling fluid

code (see below)

optional

DRLFLD_WBM

holdback_area

Surface of holdback pressure

area

optional

301 (cm2)

machine_ref

Drilling machine

text

optional

GEODRIL

method

Drilling method

code (see below)

optional

DRLMTD_RTR

rod_mass

Drilling rod mass

mass

optional

20 (kg)

rod_length

Drilling rod length

length

optional

2 (m)

thrust_area

Surface of thrust pressure

area

optional

401 (cm2)

tool

Drilling tool

code (see below)

optional

DRLBIT_CNTCI

tool_diameter

Drilling tool diameter

length

optional

66 (mm)

torque_factor

Torque factor

decimal

optional

112

Table 9. Drilling method codes
Drilling method Description

DRLMTD_HA

Auger

DRLMTD_CFA

Continuous flight auger

DRLMTD_ADM

Auger with drilling mud

DRLMTD_HSA

Hollow Stem Auger

DRLMTD_DTM

Disintegrating tool with mud circulation

DRLMTD_COR

Core drilling

DRLMTD_RTR

Rotary drilling

DRLMTD_RRFFM

Rotary reverse flow of flushing medium

DRLMTD_RTRPRC

Rotary percussion

DRLMTD_RPM

Rotary percussion with mud

DRLMTD_DTH

Downhole hammer

DRLMTD_DRI

Driving

DRLMTD_DS

Driven sampler

DRLMTD_DST

Driven slotted tube

DRLMTD_STDTM

Slotted tube with inside disintegrating tool and mud circulation

DRLMTD_CPD

Cable percussion drilling

DRLMTD_VDS

Vibro driven sampler

DRLMTD_VD

Vibration drilling

DRLMTD_VS

Vibro-sinking

DRLMTD_PS

Push sampler

Table 10. Drilling tool (bit) codes
Drilling tool Description

DRLBIT_BLD

Blade bit

DRLBIT_BLD2

2 Blades bit

DRLBIT_BLD3

3 Blades bit

DRLBIT_BLD4

4 Blades bit

DRLBIT_BLDTIP

Bladed tool tip

DRLBIT_BLDTUB

Bladed tool with tube topped

DRLBIT_JET

Jet bit

DRLBIT_RTDK

Rotary disk bit

DRLBIT_FLTCHS

Flat chisel

DRLBIT_CRSCHS

Cross chisel

DRLBIT_STPCHS

Cross Cut Step bit with TCI

DRLBIT_BTT

Buttons bit (Rotary percussion)

DRLBIT_BTTDTH

Buttons bit DTH

DRLBIT_BTTODX

Button bit ODEX

DRLBIT_CTTPDC

Cutter bit PDC (polycrystalline diamond compact)

DRLBIT_CTTGHI

Cutter bit GHI (grit hotpressed inserts)

DRLBIT_STBB

Stubber (heavy tool)

DRLBIT_CACH

California chisel bit

DRLBIT_BICN

Bicone bit

DRLBIT_TRCN

Tricone bit

DRLBIT_CNST

Tricone Steeltooth bit

DRLBIT_CNTCI

Tricone TCI (Tungsten Carbide Insert)

DRLBIT_SPRL

Spiral bit

DRLBIT_AUG

Auger

DRLBIT_ABCK

Auger with bucket

DRLBIT_HA

Hand Auger

DRLBIT_HSA

Hollow Stem Auger

DRLBIT_CFA

Continuous Flight Auger

DRLBIT_COR

Core bit

DRLBIT_TC

Tungsten carbide set

DRLBIT_GTS

Geotechnical saw-tooth carbide set

DRLBIT_PCD

Polycrystalline diamond core bit

DRLBIT_TSP

Thermally stable polycrystalline set

DRLBIT_STCB

Single-tube corebarrel

DRLBIT_DTCB

Double-tube corebarrel

DRLBIT_TTCB

Triple-tube corebarrel

DRLBIT_DTCBXT

DD/TT corebarrel with extended inner tube

DRLBIT_OSTW

Open-sampler thin-walled (Shelby)

DRLBIT_OSTKW

Open-sampler thick-walled

DRLBIT_HPS

Hydraulic Piston samplers

DRLBIT_PSTKW

Piston samplers, thick-walled

DRLBIT_PSTW

Piston samplers, thin-walled

DRLBIT_CPDS

Bit with shell (or bailer)

DRLBIT_CPDC

Bit with clay cutter

DRLBIT_CPSS

Sectional shell

Table 11. Drilling fluid codes
Drilling fluid Description

DRLFLD_AIR

Air

DRLFLD_WTR

Water

DRLFLD_AIRWTR

Air-Water

DRLFLD_AIRPLM

Air-Polymer

DRLFLD_WBM

Water-based mud

DRLFLD_WBMSHL

Water-Shale-based mud

DRLFLD_WBMPLM

Dry-polymer-based mud

DRLFLD_WBMLSF

Lignosulfonate-based mud

DRLFLD_WBMSEA

Sea-Water-based mud

DRLFLD_WBMNACL

Saturated-Salt-based mud

DRLFLD_WBMLIM

Lime-based mud

DRLFLD_WBMCLC

Calcium-based mud

DRLFLD_OBM

Oil-based mud

DRLFLD_SBM

Synthetic-based mud

Field types (convention)

Drilling Parameters convention

Definition

Drilling Parameters convention combine drilling parameters recorded during drilling tool movement according to time or depth.

The convention is simply named parameters.

Three different field types are actually supported by this format. Each field type can have different phases.

Table 12. Parameters phases
Field type Phase

Parameters recorded during drilling

DRILL

Jet grouting parameters recorded during drilling and injection

JETDOWN, JETUP, PREJETDOWN, PREJETUP

CFA Pile parameters recorded during drilling and concreting

PILEDOWN, PILEUP

Example of parameters convention

Example of parameters convention
  <convention version="1.1">
    <parameters phase="DRILL">
      <inclination>
        <X unit="degree">91.9</X>
        <Y unit="degree">88.6</Y>
      </inclination>
      <effective_duration unit="s">3789.00</effective_duration>
      <logfile>data.nc</logfile>
    </parameters>
  </convention>

Properties

Table 13. Parameters information
Property Description Type Required Example

effective_duration

Drilling effective duration (out of break)

duration

required

3789.00 (s)

inclination

Tilt of the drill mast

structure (see below)

optional

logfile

Name of data file

text

required

data.nc

Table 14. Inclination information (optional)
Property Description Type Required Example

X

Inclination depending on X direction

angle

required

91.9 (degree)

Y

Inclination depending on Y direction

angle

required

88.6 (degree)

Data file

Data file is made with the netCDF (3.6+) format. They contain data logs and log names declarations (variables).

Example of data.nc dump

Example of data file from 50001180101070101D.bor (data.nc dump to data.cdl format)

Data.cdl example
netcdf data {
dimensions:
	time = UNLIMITED ; // (976 currently)
variables:
	float time(time) ;
		time:unit = "s" ;
		time:label = "Temps" ;
	float DEPTH(time) ;
		DEPTH:unit = "m" ;
		DEPTH:label = "Prof." ;
	float AS(time) ;
		AS:unit = "m/h" ;
		AS:label = "VIA" ;
		AS:scale_max = 1500.f ;
	int EVP(time) ;
		EVP:label = "evt-part" ;
	int EVR(time) ;
		EVR:label = "evt-new-rod" ;
	float TP(time) ;
		TP:unit = "bar" ;
		TP:label = "PO" ;
		TP:scale_max = 300.f ;
	float IP(time) ;
		IP:unit = "bar" ;
		IP:label = "PI" ;
		IP:scale_max = 50.f ;
	float TQ(time) ;
		TQ:unit = "bar" ;
		TQ:label = "CR" ;
		TQ:scale_max = 300.f ;
	float SP(time) ;
		SP:unit = "bar" ;
		SP:label = "PF" ;
		SP:scale_max = 300.f ;
data:

 time = 0, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2, 4.4, 4.6, 4.8,
     ...
     4037.6, 4042.4, 4043.6, 4046, 4047, 4163.4 ;

 DEPTH = 0, 0.02, 0.08, 0.15, 0.21, 0.28, 0.35, 0.42, 0.48, 0.55, 0.62, 0.69,
     ...
     14.96, 14.97, 14.98, 15 ;

 AS = 0, 31.45398, 1178.385, 1148.298, 1138.269, 1228.529, 1258.615,
     ....
     15.87894, 53.15267, 20.05761 ;

 EVP = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     ...
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ;

 EVR = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     ...
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ;

 TP = 7.42, 7.42, 70.89, 70.89, 70.89, 70.89, 70.89, 70.89, 70.89, 70.89,
     ...
     73.34, 74.56, 74.56, 74.56, 70.89, 4.98 ;

 IP = 1.31, 1.31, 1.31, 1.31, 1.31, 1.31, 1.31, 1.31, 1.31, 1.31, 1.31, 1.31,
     ...
     12.3, 4.98, 7.42, 17.18, 11.08, 7.42, 14.74, 12.3, 1.31 ;

 TQ = 4.98, 4.98, 6.2, 6.2, 2.53, 4.98, 4.98, 4.98, 4.98, 4.98, 4.98, 4.98,
     ...
     74.56, 86.76, 85.54, 85.54, 64.79 ;

 SP = 1.31, 2.53, 1.31, 0, 4.98, 1.31, 0.09, 1.31, 6.2, 0, 4.98, 1.31, 2.53,
     ...
     2.53, 1.31, 2.53, 1.31, 2.53, 4.98, 0, 4.98, 4.98, 7.42 ;
}

Parameters Log names

Table 15. Drilling Parameters log names
Log name Description Type Required Remark

time

Measured time

float

required

NETCDF dimension

DEPTH

Measured penetration length

float

required

AS

Advance Speed (penetration rate)

float

required

EVP

Event Particular

integer

optional

EVR

Event new Rod

integer

optional

EVS

Event start relay

float

optional

TP

Tool pressure

float

optional

IP

Injection pressure

float

optional

TQ

Rotation pressure (Torque)

float

optional

TQC

Casing Rotation pressure

float

optional

RSP

Rotation Speed

float

optional

RSPC

Casing Rotation Speed

float

optional

HP

Holding Pressure

float

optional

SP

Striking Pressure

float

optional

RV

Reflected Vibration

float

optional

IF

Injection Flow (inlet flow)

float

optional

OF

Drilling fluid outflow (Outlet Flow)

float

optional

IV

Injection Volume

float

optional

OV

Outlet Volume

float

optional

AP

Air Pressure

float

optional

AF

Air Flow

float

optional

AV

Air Volume

float

optional

WF

Water Flow

float

optional

WP

Water Pressure

float

optional

WV

Water Volume

float

optional

ECM

Electrical Conductivity of Mud

float

optional

PHM

pH of Mud

float

optional

DO2M

Dissolved O2 in Mud

float

optional

TEMPM

Temperature of Mud

float

optional

Ménard Pressuremeter Test convention

Definition

Ménard Pressuremeter Test is performed by the radial expansion of a tricell probe placed in the ground. This test is specified by the standard ISO 22476-4.

The convention is simply named pressuremeter.

Three different pressuremeter test types are supported by this format.

Table 16. Ménard Pressuremeter Test types
Test type Description

ground

Ménard pressuremeter test in natural soils

volume_loss

Equipment volume loss calibration test

pressure_loss

Probe pressure loss calibration test

Example of Ménard Pressuremeter Test convention

Example of Ménard Pressuremeter Test convention (ground test type)
  <convention version="1.2">
    <pressuremeter>
      <cu_ref>CPVA001</cu_ref>
      <ground>
        <pressure_loss_filename>50001180101062101P.bor</pressure_loss_filename>
        <cu_height unit="m">1</cu_height>
        <test_depth unit="m">2</test_depth>
        <logfile>data.nc</logfile>
      </ground>
    </pressuremeter>
  </convention>

Common properties

Table 17. Pressuremeter common properties
Property Description Type Required Example

cu_ref

Control Unit ID

text

optional

CPVA001

Volume loss test

Volume loss example
      <volume_loss>
        <cover_type>CVR_RUBBER</cover_type>
        <probe_type>PRB_G</probe_type>
        <central_cell_diameter unit="mm">56</central_cell_diameter>
        <central_cell_length unit="mm">210</central_cell_length>
        <tubing_type>TUB_COAXIAL</tubing_type>
        <tubing_length unit="m">25</tubing_length>
        <calibration_cylinder_diameter unit="mm">60</calibration_cylinder_diameter>
        <membrane_pressure_loss unit="bar">0.54</membrane_pressure_loss>
        <slotted_tube>true</slotted_tube>
        <central_cell_diameter_inside_slotted_tube unit="mm">
          44
        </central_cell_diameter_inside_slotted_tube>
        <logfile>data.nc</logfile>
      </volume_loss>
Table 18. Volume loss properties
Property Description Type Required Example

calibration_cylinder_diameter

Calibration cylinder diameter

length

required

66 (mm)

central_cell_diameter

Central cell diameter

length

required

56 (mm)

central_cell_length

Central cell length

length

required

210 (mm)

cover_type

Cover type

code (see below)

required

CVR_RUBBER

membrane_pressure_loss

Membrane pressure loss

pressure

required

0.054 (MPa)

probe_type

Type of pressuremeter probe

code (see below)

required

PRB_G

tubing_length

Tubing length

length

required

25 (m)

tubing_type

Tubing type

code (see below)

required

TUB_COAXIAL

logfile

Name of data file

text

required

data.nc

Table 19. Cover type codes
Cover type Description

CVR_RUBBER

Rubber

CVR_REINFORCED_MESH

Reinforced mesh

CVR_METALIC_MESH

Metallic mesh

CVR_METALIC_STRIPS

Metallic strips

Table 20. Probe type codes
Probe type Description

PRB_G

Type of pressuremeter probe where the central measuring cell is formed by a dedicated membrane over which an external membrane is fitted to form the guard cells

PRB_E

Type of pressuremeter probe where the three cells are formed by three separate membranes in line

Table 21. Tubing type codes
Tubing type Description

TUB_TWIN

Parallel lines

TUB_COAXIAL

Coaxial line

Pressure loss test

Pressure loss example
      <pressure_loss>
        <volume_loss_filename>50001180101060101P.bor</volume_loss_filename>
        <logfile>data.nc</logfile>
      </pressure_loss>
Table 22. Pressure loss properties
Property Description Type Required Example

volume_loss_filename

Name of associated volume loss test

text

required

50001180101060101P.bor

logfile

Name of data file

text

required

data.nc

Ground test

Ground test example
      <ground>
        <pressure_loss_filename>50001180101062101P.bor</pressure_loss_filename>
        <cu_height unit="m">1</cu_height>
        <test_depth unit="m">2</test_depth>
        <logfile>data.nc</logfile>
      </ground>
Table 23. Ground properties
Property Description Type Required Example

cu_height

Height of the control unit relative to ground level

length

required

1 (m)

pressure_loss_filename

Name of associated pressure loss test

text

required

50001180101060101P.bor

test_depth

Depth of the test relative to ground level

length

required

2 (m)

logfile

Name of data file

text

required

data.nc

Data file

Data file is made with the netCDF (3.6+) format. They contain data logs and log names declarations (variables).

Example of data.nc dump

Example of data file (data.nc dump to data.cdl format)

Data.cdl example
netcdf data {
dimensions:
	time = UNLIMITED ; // (12 currently)
variables:
	float time(time) ;
		time:unit = "s" ;
		time:label = "time" ;
	float PR1(time) ;
		PR1:unit = "bar" ;
		PR1:label = "PR1S" ;
	float PR15(time) ;
		PR15:unit = "bar" ;
		PR15:label = "PR15S" ;
	float PR30(time) ;
		PR30:unit = "bar" ;
		PR30:label = "PR30S" ;
	float PR60(time) ;
		PR60:unit = "bar" ;
		PR60:label = "PR60S" ;
	float PG1(time) ;
		PG1:unit = "bar" ;
		PG1:label = "PG1S" ;
	float PG15(time) ;
		PG15:unit = "bar" ;
		PG15:label = "PG15S" ;
	float PG30(time) ;
		PG30:unit = "bar" ;
		PG30:label = "PG30S" ;
	float PG60(time) ;
		PG60:unit = "bar" ;
		PG60:label = "PG60S" ;
	float V1(time) ;
		V1:unit = "cm3" ;
		V1:label = "V1S" ;
	float V15(time) ;
		V15:unit = "cm3" ;
		V15:label = "V15S" ;
	float V30(time) ;
		V30:unit = "cm3" ;
		V30:label = "V30S" ;
	float V60(time) ;
		V60:unit = "cm3" ;
		V60:label = "V60S" ;
		V60:scale_max = 500.f ;
	float CREEP(time) ;
		CREEP:unit = "cm3" ;
		CREEP:label = "fluage" ;
	float DELT60(time) ;
		DELT60:unit = "cm3" ;
		DELT60:label = "delt60" ;
data:

 time = 80, 141, 205, 273, 339, 410, 477, 546, 616, 687, 759, 836 ;

 PR1 = 0.48, 0.96, 1.48, 2.62, 3.46, 5.67, 7.62, 11.59, 15.6, 20.53, 25.49,
    30.46 ;

 PR15 = 0.51, 1, 1.45, 2.56, 3.52, 5.57, 7.48, 11.53, 15.48, 20.52, 25.48,
    30.48 ;

 PR30 = 0.49, 1.02, 1.51, 2.56, 3.5, 5.55, 7.47, 11.5, 15.47, 20.53, 25.49,
    30.48 ;

 PR60 = 0.46, 0.98, 1.5, 2.55, 3.47, 5.52, 7.49, 11.56, 15.47, 20.48, 25.5,
    30.5 ;

 PG1 = 0.12, 0.12, 0.52, 1.5, 2.6, 4.52, 6.48, 10.48, 14.51, 19.54, 24.59,
    29.53 ;

 PG15 = 0.14, 0.12, 0.53, 1.5, 2.54, 4.53, 6.51, 10.5, 14.56, 19.52, 24.52,
    29.5 ;

 PG30 = 0.12, 0.12, 0.53, 1.52, 2.55, 4.53, 6.5, 10.5, 14.52, 19.55, 24.5,
    29.53 ;

 PG60 = 0.14, 0.14, 0.56, 1.53, 2.53, 4.53, 6.51, 10.51, 14.51, 19.53, 24.53,
    29.55 ;

 V1 = 37, 51, 81, 105, 116, 136, 152, 178, 207, 240, 282, 348 ;

 V15 = 43, 65, 89, 108, 119, 139, 155, 185, 212, 249, 295, 369 ;

 V30 = 46, 72, 91, 110, 121, 141, 156, 187, 215, 254, 304, 388 ;

 V60 = 48, 77, 95, 111, 121, 142, 158, 189, 219, 259, 315, 414 ;

 CREEP = 2, 5, 4, 1, 0, 1, 2, 2, 4, 5, 11, 26 ;

 DELT60 = 48, 29, 18, 16, 10, 21, 16, 31, 30, 40, 56, 99 ;
}

Pressuremeter Log names

Table 24. Pressuremeter log names
Log name Description Type Required Remark

time

Measured time

float

required

NETCDF dimension

PR1

Liquid pressure at 1 s [3]

float

required

PR15

Liquid pressure at 15 s [3]

float

required

PR30

Liquid pressure at 30 s [3]

float

required

PR60

Liquid pressure at 60 s [3]

float

required

PG1

Gas pressure at 1 s [4]

float

required

PG15

Gas pressure at 15 s [4]

float

required

PG30

Gas pressure at 30 s [4]

float

required

PG60

Gas pressure at 60 s [4]

float

required

V1

Volume of injected liquid at 1 s [5]

float

required

V15

Volume of injected liquid at 15 s [5]

float

required

V30

Volume of injected liquid at 30 s [5]

float

required

V60

Volume of injected liquid at 60 s [5]

float

required

CREEP

Difference in volumes recorded at 60 s and at 30 s at each pressure hold

float

required

DELT60

60 s injected volume change between successive pressure holds

float

required


1. except for Ménard Pressuremeter Calibration Test
2. relative to ground level
3. Liquid pressure applied by the control unit indicator to the the central cell as read x s after the beginning of the pressure hold
4. Gas pressure applied by the control unit indicator to the guard cells as read x s after the beginning of the pressure hold
5. Volume injected in the central measuring cell as read x s after the beginning of the pressure hold